Mathematics » Trigonometry » Compound Angle Identities
To do 8 min read
Derivation of \(\cos(\alpha – \beta )\)
Optional Investigation:Compound angles
Danny is studying for a trigonometry test and completes the following question:
Question:
Evaluate the following:
\(\cos ( \text{180} ° – \text{120} ° )\)
Danny’s solution:
\[\begin{array}{rll} \cos ( \text{180} ° – \text{120} ° ) &= \cos \text{180} ° – \cos \text{120} ° & (\text{line } 1 )\\ &= -1 – \cos ( \text{90} ° + \text{30} ° ) & (\text{line } 2 ) \\ &= – 1 + \sin \text{30} ° & (\text{line } 3 ) \\ &= -1 + \cfrac{1}{2} & (\text{line } 4 ) \\ &= -\cfrac{1}{2} & (\text{line } 5 ) \end{array}\]
- Consider Danny’s solution and determine why it is incorrect.
- Use a calculator to check that Danny’s answer is wrong.
- Describe in words the mistake(s) in his solution.
Is the following statement true or false?
“A trigonometric ratio can be distributed to the angles that lie within the brackets.”
From the investigation above, we know that \(\cos (\alpha – \beta) \ne \cos \alpha – \cos \beta\). It is wrong to apply the distributive law to the trigonometric ratios of compound angles.
\begin{align*} \text{Distance formula: } \quad d_{AB} &= \sqrt{ {({x}_{A}-{x}_{B})}^{2}+{({y}_{A}-{y}_{B})}^{2} } \\ \text{Cosine rule: } \quad a^{2} &= b^{2} + c^{2} – 2bc \cdot \cos \hat{A} \end{align*}
Using the distance formula and the cosine rule, we can derive the following identity for compound angles:
\[\cos(\alpha -\beta ) = \cos \alpha \cos\beta +\sin\alpha \sin\beta\]
Consider the unit circle \((r = 1)\) below. The two points \(L(a;b)\) and \(K(x;y)\) are shown on the circle.
We can express the coordinates of \(L\) and \(K\) in terms of the angles \(\alpha\) and \(\beta\):
\begin{align*} \text{In } \triangle LOM, \quad \sin \beta &= \cfrac{b}{1} \\ \therefore b &=\sin\beta \\ \cos \beta &=\cfrac{a}{1} \\ \therefore a &=\cos\beta \\ & \\ L &= (\cos\beta ;\sin\beta ) \\ & \\ \text{Similarly. } K &=(\cos\alpha ;\sin\alpha ) \end{align*}
We use the distance formula to determine \(K{L}^{2}\):
\begin{align*} {d}^{2} &= {({x}_{K}-{x}_{L})}^{2}+{({y}_{K}-{y}_{L})}^{2} \\ K{L}^{2}& = {(\cos\alpha -\cos\beta )}^{2}+{(\sin\alpha -\sin\beta )}^{2} \\ & = {\cos}^{2}\alpha -2\cos\alpha\cos \beta +{\cos}^{2}\beta +{\sin}^{2}\alpha -2\sin\alpha\sin \beta +{\sin}^{2}\beta \\ & = ({\cos}^{2}\alpha +{\sin}^{2}\alpha )+({\cos}^{2}\beta +{\sin}^{2}\beta )-2\cos\alpha\cos \beta -2\sin\alpha\sin \beta \\ & = 1+1-2(\cos\alpha\cos \beta +\sin\alpha\sin \beta ) \\ & = 2-2(\cos\alpha\cos \beta +\sin\alpha\sin \beta ) \end{align*}
Now we determine \(K{L}^{2}\) using the cosine rule for \(\triangle KOL\):
\begin{align*} K{L}^{2}& = K{O}^{2}+L{O}^{2}-2 \cdot KO \cdot LO \cdot \cos(\alpha -\beta ) \\ & = {1}^{2}+{1}^{2}-2(1)(1)\cos(\alpha -\beta ) \\ & = 2-2 \cdot \cos(\alpha -\beta ) \end{align*}
Equating the two expressions for \(K{L}^{2}\), we have
\begin{align*} 2-2 \cdot \cos(\alpha -\beta ) & = 2-2(\cos\alpha\cos \beta +\sin\alpha \sin\beta ) \\ 2 \cdot \cos(\alpha -\beta ) & = 2(\cos\alpha\cos \beta +\sin\alpha \sin\beta ) \\ \therefore \cos(\alpha -\beta ) & = \cos \alpha \cos\beta +\sin\alpha \sin\beta \end{align*}
Example
Question
Derive an expression for \(\cos(\alpha + \beta )\) in terms of the trigonometric ratios of \(\alpha\) and \(\beta\).
Use the compound angle formula for \(\cos (\alpha – \beta )\)
We use the compound angle formula for \(\cos (\alpha – \beta )\) and manipulate the sign of \(\beta\) in \(\cos (\alpha + \beta )\) so that it can be written as a difference of two angles:
\begin{align*} \cos (\alpha + \beta ) & = \cos (\alpha – (-\beta )) \\ \text{And we have shown } \cos (\alpha – \beta )& = \cos \alpha \cos\beta +\sin\alpha \sin\beta \\ \therefore \cos [\alpha – (- \beta )]& = \cos \alpha \cos(-\beta) +\sin\alpha \sin(-\beta) \\ \therefore \cos (\alpha + \beta ) & = \cos \alpha \cos\beta – \sin\alpha \sin \beta \end{align*}
Write the final answer
\[\cos (\alpha + \beta ) = \cos \alpha \cos\beta – \sin\alpha \sin \beta\]
Example
Question
Derive the expanded formulae for \(\sin(\alpha – \beta )\) and \(\sin(\alpha + \beta )\) in terms of the trigonometric ratios of \(\alpha\) and \(\beta\).
Use the compound angle formula and co-functions to expand \(\sin(\alpha – \beta )\)
Using co-functions, we know that \(\sin \hat{A} = \cos ( \text{90} ° – \hat{A} )\), so we can write \(\sin (\alpha + \beta )\) in terms of the cosine function as:
\begin{align*} \sin ( \alpha – \beta ) & = \cos ( \text{90} ° – ( \alpha – \beta ) ) \\ & = \cos ( \text{90} ° – \alpha + \beta ) \\ & = \cos [ ( \text{90} ° – \alpha) + \beta ] \end{align*}
Apply the compound angle formula:
\begin{align*} \cos (\alpha + \beta ) & = \cos \alpha \cos\beta – \sin\alpha \sin\beta \\ \therefore \cos [ ( \text{90} ° – \alpha) + \beta ] & = \cos ( \text{90} ° – \alpha) \cos\beta – \sin ( \text{90} ° – \alpha) \sin\beta \\ \therefore \sin( \alpha – \beta) & = \sin \alpha \cos\beta – \cos \alpha \sin\beta \end{align*}
To derive the formula for \(\sin ( \alpha + \beta )\), we use the compound formula for \(\sin ( \alpha – \beta )\) and manipulate the sign of \(\beta\):
\begin{align*} \sin (\alpha – \beta )& = \sin \alpha \cos\beta – \cos \alpha \sin\beta \\ \text{We can write } \sin ( \alpha + \beta ) & = \sin [ \alpha – (- \beta ) ] \\ \therefore \sin [ \alpha – (- \beta ) ] &= \sin \alpha \cos (-\beta) – \cos \alpha \sin (-\beta) \\ \therefore \sin ( \alpha + \beta ) & = \sin \alpha \cos\beta + \cos \alpha \sin\beta \end{align*}
Write the final answers
\[\sin (\alpha – \beta ) = \sin \alpha \cos\beta – \cos \alpha \sin\beta\]\[\sin (\alpha + \beta ) = \sin \alpha \cos\beta + \cos \alpha \sin\beta\]
Compound angle formulae
- \(\cos (\alpha – \beta ) = \cos \alpha \cos\beta + \sin \alpha \sin\beta\)
- \(\cos (\alpha + \beta ) = \cos \alpha \cos\beta – \sin \alpha \sin\beta\)
- \(\sin (\alpha – \beta ) = \sin \alpha \cos\beta – \cos \alpha \sin\beta\)
- \(\sin (\alpha + \beta ) = \sin \alpha \cos\beta + \cos \alpha \sin\beta\)
Note: we can use the compound angle formulae to expand and simplify compound angles in trigonometric expressions (using the equations from left to right) or we can use the expanded form to determine the trigonometric ratio of a compound angle (using the equations from right to left).
Example
Question
Prove that \(\sin \text{75} °=\cfrac{\sqrt{2}(\sqrt{3}+1)}{4}\) without using a calculator.
Consider the given identity
We know the values of the trigonometric functions for the special angles ( \(\text{30}\) °, \(\text{45}\) °, \(\text{60}\) °, etc.) and we can write \(\text{75} ° = \text{30} ° + \text{45} °\).
Therefore, we can use the compound angle formula for \(\sin (\alpha + \beta )\) to express \(\sin \text{75} °\) in terms of known trigonometric function values.
Prove the left-hand side of the identity equals the right-hand side
When proving an identity is true, remember to only work with one side of the identity at a time.
\begin{align*} \text{LHS }& = \sin \text{75} ° \\ & = \sin ( \text{45} °+ \text{30} °) \\ \sin ( \text{45} °+ \text{30} °) & = \sin ( \text{45} ° )\cos( \text{30} ° )+\cos( \text{45} ° )\sin( \text{30} ° ) \\ & = \cfrac{1}{\sqrt{2}} \cdot \cfrac{\sqrt{3}}{2}+\cfrac{1}{\sqrt{2}} \cdot \cfrac{1}{2} \\ & = \cfrac{\sqrt{3}+1}{2\sqrt{2}} \\ & = \cfrac{\sqrt{3}+1}{2\sqrt{2}}\times \cfrac{\sqrt{2}}{\sqrt{2}} \\ & = \cfrac{\sqrt{2}(\sqrt{3}+1)}{4} \\ &= \text{RHS} \end{align*}
Therefore, we have shown that \(\sin{75}°=\cfrac{\sqrt{2}(\sqrt{3}+1)}{4}\).
Example
Question
Determine the value of the following expression without the use of a calculator:
\[\cos \text{65} ° \cos \text{35} ° + \cos \text{25} ° \cos \text{55} °\]
Use co-functions to simplify the expression
- We need to change two of the trigonometric functions from cosine to sine so that we can apply the compound angle formula.
- We also need to make sure that the sum (or difference) of the two angles is equal to a special angle so that we can determine the value of the expression without using a calculator. Notice that \(\text{35} ° + \text{25} ° = \text{60} °\).
\begin{align*} &\cos \text{65} ° \cos \text{35} ° + \cos \text{25} ° \cos \text{55} ° \\ &= \cos ( \text{90} ° – \text{25} °) \cos \text{35} ° + \cos \text{25} ° \cos ( \text{90} ° – \text{35} °) \\ &= \sin \text{25} ° \cos \text{35} ° + \cos \text{25} ° \sin \text{35} ° \end{align*}
Apply the compound angle formula and use special angles to evaluate the expression
\begin{align*} & \sin \text{25} ° \cos \text{35} ° + \cos \text{25} ° \sin \text{35} ° \\ &= \sin ( \text{25} ° + \text{35} ° ) \\ &= \sin \text{60} ° \\ &= \cfrac{\sqrt{3}}{2} \end{align*}
Write the final answer
\[\cos \text{65} ° \cos \text{35} ° + \cos \text{25} ° \cos \text{55} ° = \cfrac{\sqrt{3}}{2}\]
Checking answers: It is always good to check answers. The question stated that we could not use a calculator to find the answer, but we can use a calculator to check that the answer is correct:
\begin{align*} \text{LHS}&= \cos \text{65} ° \cos \text{35} ° + \cos \text{25} ° \cos \text{55} ° = \text{0.866} \ldots \\ \text{RHS}&= \cfrac{\sqrt{3}}{2} = \text{0.866} \ldots \\ \therefore \text{LHS} &= \text{RHS} \end{align*}
Continue With the Mobile App | Available on Google Play
[Attributions and Licenses]
Share Thoughts
Summary and Main Ideas
Derivation of sin 2α
Share Tweet Email WhatsApp
This is a lesson from the tutorial, Trigonometry and you are encouraged to log in or register, so that you can track your progress.
Log In
Share Thoughts
Post Image
Math Editor
Exponents
Operators
Brackets
Arrows
Relational
Sets
Greek
Advanced
\( a^{b}\)
\( a_{b}^{c}\)
\({a_{b}}^{c}\)
\(a_{b}\)
\(\sqrt{a}\)
\(\sqrt[b]{a}\)
\(\frac{a}{b}\)
\(\cfrac{a}{b}\)
\(+\)
\(-\)
\(\times\)
\(\div\)
\(\pm\)
\(\cdot\)
\(\amalg\)
\(\ast\)
\(\barwedge\)
\(\bigcirc\)
\(\bigodot\)
\(\bigoplus\)
\(\bigotimes\)
\(\bigsqcup\)
\(\bigstar\)
\(\bigtriangledown\)
\(\bigtriangleup\)
\(\blacklozenge\)
\(\blacksquare\)
\(\blacktriangle\)
\(\blacktriangledown\)
\(\bullet\)
\(\cap\)
\(\cup\)
\(\circ\)
\(\circledcirc\)
\(\dagger\)
\(\ddagger\)
\(\diamond\)
\(\dotplus\)
\(\lozenge\)
\(\mp\)
\(\ominus\)
\(\oplus\)
\(\oslash\)
\(\otimes\)
\(\setminus\)
\(\sqcap\)
\(\sqcup\)
\(\square\)
\(\star\)
\(\triangle\)
\(\triangledown\)
\(\triangleleft\)
\(\Cap\)
\(\Cup\)
\(\uplus\)
\(\vee\)
\(\veebar\)
\(\wedge\)
\(\wr\)
\(\therefore\)
\(\left ( a \right )\)
\(\left \| a \right \|\)
\(\left [ a \right ]\)
\(\left \{ a \right \}\)
\(\left \lceil a \right \rceil\)
\(\left \lfloor a \right \rfloor\)
\(\left ( a \right )\)
\(\vert a \vert\)
\(\leftarrow\)
\(\leftharpoondown\)
\(\leftharpoonup\)
\(\leftrightarrow\)
\(\leftrightharpoons\)
\(\mapsto\)
\(\rightarrow\)
\(\rightharpoondown\)
\(\rightharpoonup\)
\(\rightleftharpoons\)
\(\to\)
\(\Leftarrow\)
\(\Leftrightarrow\)
\(\Rightarrow\)
\(\overset{a}{\leftarrow}\)
\(\overset{a}{\rightarrow}\)
\(\approx \)
\(\asymp \)
\(\cong \)
\(\dashv \)
\(\doteq \)
\(= \)
\(\equiv \)
\(\frown \)
\(\geq \)
\(\geqslant \)
\(\gg \)
\(\gt \)
\(| \)
\(\leq \)
\(\leqslant \)
\(\ll \)
\(\lt \)
\(\models \)
\(\neq \)
\(\ngeqslant \)
\(\ngtr \)
\(\nleqslant \)
\(\nless \)
\(\not\equiv \)
\(\overset{\underset{\mathrm{def}}{}}{=} \)
\(\parallel \)
\(\perp \)
\(\prec \)
\(\preceq \)
\(\sim \)
\(\simeq \)
\(\smile \)
\(\succ \)
\(\succeq \)
\(\vdash\)
\(\in \)
\(\ni \)
\(\notin \)
\(\nsubseteq \)
\(\nsupseteq \)
\(\sqsubset \)
\(\sqsubseteq \)
\(\sqsupset \)
\(\sqsupseteq \)
\(\subset \)
\(\subseteq \)
\(\subseteqq \)
\(\supset \)
\(\supseteq \)
\(\supseteqq \)
\(\emptyset\)
\(\mathbb{N}\)
\(\mathbb{Z}\)
\(\mathbb{Q}\)
\(\mathbb{R}\)
\(\mathbb{C}\)
\(\alpha\)
\(\beta\)
\(\gamma\)
\(\delta\)
\(\epsilon\)
\(\zeta\)
\(\eta\)
\(\theta\)
\(\iota\)
\(\kappa\)
\(\lambda\)
\(\mu\)
\(\nu\)
\(\xi\)
\(\pi\)
\(\rho\)
\(\sigma\)
\(\tau\)
\(\upsilon\)
\(\phi\)
\(\chi\)
\(\psi\)
\(\omega\)
\(\Gamma\)
\(\Delta\)
\(\Theta\)
\(\Lambda\)
\(\Xi\)
\(\Pi\)
\(\Sigma\)
\(\Upsilon\)
\(\Phi\)
\(\Psi\)
\(\Omega\)
\((a)\)
\([a]\)
\(\lbrace{a}\rbrace\)
\(\frac{a+b}{c+d}\)
\(\vec{a}\)
\(\binom {a} {b}\)
\({a \brack b}\)
\({a \brace b}\)
\(\sin\)
\(\cos\)
\(\tan\)
\(\cot\)
\(\sec\)
\(\csc\)
\(\sinh\)
\(\cosh\)
\(\tanh\)
\(\coth\)
\(\bigcap {a}\)
\(\bigcap_{b}^{} a\)
\(\bigcup {a}\)
\(\bigcup_{b}^{} a\)
\(\coprod {a}\)
\(\coprod_{b}^{} a\)
\(\prod {a}\)
\(\prod_{b}^{} a\)
\(\sum_{a=1}^b\)
\(\sum_{b}^{} a\)
\(\sum {a}\)
\(\underset{a \to b}\lim\)
\(\int {a}\)
\(\int_{b}^{} a\)
\(\iint {a}\)
\(\iint_{b}^{} a\)
\(\int_{a}^{b}{c}\)
\(\iint_{a}^{b}{c}\)
\(\iiint_{a}^{b}{c}\)
\(\oint{a}\)
\(\oint_{b}^{} a\)
Cookies are small files that are stored on your browser. We use cookies and similar technologies to ensure our website works properly, personalize your browsing experience, analyze how you use our website, and deliver relevant ads to you.We may share your site usage data with our social media, advertising, and analytics partners for these reasons. In summary, we use cookies to ensure that we give you the best experience on our website. You can learn more about how we use cookies by visiting our privacy policy page.OkayPrivacy policy